Great Math Products!


Base Ten Number Line


Multiplication Tricks



ThreeFingers with Numbers

Telling Time Misconceptions


Equivalent Fractions


Simplifying Fractions


Clock Fractions


Math Fact Motivation


Math Night 2012


Bulletin Board Ideas


Classroom Management


Lines and Angles




Grab My Button

Teacher Blog Spot
I get the cutest handwriting fonts at Fonts for Peas!

Save $5 at Educents



Do This Experiment if Your Kids Are Name Calling {Giveaway}

So, I had this idea a couple of years ago.  It started with the curiosity of the experiment Dr. Emoto had about water and snowflakes.  In case you don’t know Dr. Emoto spoke different words to water and then froze it.  After freezing the water, he saw the water form different structures and shapes. The kind words made beautiful snowflakes while the bad words made the water form in less desirable shapes.  I showed this to my students first.

Then I saw where someone had recreated this experiment with rice and water.  I decided to try this at home one summer where I could speak to the jars without interruption for 30 days.  When I was at home, I chose 3 equal sized jars and put one cup of dry rice in each.  Then I poured one cup of water on top of the rice in each of the three jars.  On one jar I labeled LOVE, one I labeled HATE, and on the third jar I wrote nothing.  Then I spoke to the jars for 30 days.  I said, ” I love you” to the love jar and “I hate you” to the jar labeled hate.  I did nothing to the jar labeled with nothing.  After 30 days I opened the jars.  I was in total suspense.  When I opened the jars, they all stunk really badly, but they all had distinctly different smells.  They all grew mold.  Interestingly, the jar that was ignored grew more mold than the jar that was labeled hate.

Now fast forward to a couple of years later.  I did this with my class starting on the first day of school.  This time I did the experiment a little differently and I recommend doing the experiment this way with your class if you decide to do this. I boiled 3 cups of white rice and measured out one cup for each of three equal sized jars and sealed them.  I, again, labeled the jars, love, hate, and then just a blank jar.  Each time the students would leave for the day, they would say “I love you” to the love jar and “I hate you” to the hate jar.  Now to the blank jar, they were supposed to do nothing and say nothing.  Every now and then a child would pick up the blank jar.  I had it marked on the calendar for the day we would open the jars.  We just finished the experiment this past Friday.  This was the 30th day of us talking to the jars, but not the 30th day of the jars sitting.  On days we were not at school, the jars just sat.  I was a little worried that this would have a negative effect on the experiment, but it did not. (below the lids are ajar because this is the day we opened them)

Before we did the experiment, I had the students predict what would happen to each jar.  None of them predicted what actually happened.  I was also surprised about what happened.The rice DID NOT mold.  About mid way through the 30 days the rice started to liquefy and become just white slush.  The granules of rice were no longer visible.  The consistency was more like oatmeal.  When we opened the jars, they all stunk but not as bad as when I did the experiment at home.  The love jar smelled like fermented bread.  The hate jar smelled like fermented cheese and had more of a sour smell.  In my opinion, the blank jar smelled the worst and also smelled fermented.

To make sure everyone had a chance to smell the jars without having their peers adverse reactions affect their experience, I had each student go smell the jars individually with their back turned to the class.  The jars were set up in the back of the room.  The children were busy working on another activity while I let each child go one by one to the back for jar observations. I instructed them before hand to not make any reactions to the class so that everyone had a fair chance to form their own opinion.  I  had the students write down the results of what the jars smelled like after they smelled them on the same paper that they had made their predictions 30 days earlier.  Then I let them talk at their table groups about what they noticed.  Later I pulled all the students to the carpet to discuss what they noticed and their thoughts.  Of course, they wanted to talk about how it smelled like “poop”, “farts”, and the like! 🙂  When we got past what the jars smelled like, I asked the kids why they thought I had them do this.  Some kids recognized the fact that their words changed the rice, and were in amazement about how this had happened.  (below the jars from the back–I know the jars look like different amounts, but I measured each one the same)

I must mention a HUGE teacher moment happened during this.  One of those moments that makes your job worth while :).  I had a child come up to me after we had talked about how words affect people when you say mean things to them just like our words affected the rice positively or negatively.  He said, “You know, I’ve been saying mean things to a someone in my class, and he’s here in this room right now.  I said, “Do you feel like you need to apologize?”  He shook his head saying yes.  I said, “Well, you are welcome to step outside with him and apologize.”  And, so he did!

Who would’ve thought that talking to rice would change the heart of a child?


Prize: $75 Teachers Pay Teachers Gift Card
Giveaway Organized by: Kelly Malloy (An Apple for the Teacher)
Rules: Use the Rafflecopter to enter.  Giveaway ends 10/13/17 and is open worldwide.
Are you a Teacher Blogger or Teachers pay Teachers seller who wants to participate in giveaways like these to grow your store and social media?  Click here to find out how you can join our totally awesome group of bloggers! 

a Rafflecopter giveaway

What Is It? {Giveaway Time}

So the story goes like this.  I, of course, like most dutiful teachers went back to school before my contract began to get my classroom set up.  I currently have a trailer classroom.  We affectionately refer to all of us in trailers as the “trailer park”.  Well the first time I went into my trailer and walked out I noticed a little friend waiting for me on the wood railing outside my door–pictured above.

What do you think it could be?

Suddenly I smiled and realized what this was.  I hate to spoil the fun, but I’ll go ahead and tell you.  Last school year towards the end you may remember I spent a lot of time doing electricity experiments with lemons, limes, potatoes, fruit, you name it.  I had given some of the potatoes to a classroom teacher so that she could use them in her plant unit.  She was allowing the students to sprout seeds.  Well the last day of school, I had one little potato left that had sprouted a bit and I planned on taking it home to see what would happen.  And, you guessed it!  I forgot and left it on the railing outside my trailer.  Little did I know two months later it would still be there untouched.

As if my whole house and yard haven’t become little science projects.  Think with me.  How would you turn this into a lesson? 🙂


Giveaway time!!!

Prize: $100 Amazon Gift Card

Giveaway organized by: Kelly Malloy (An Apple for the Teacher)
Rules: Use the Rafflecopter form to enter.  Giveaway ends 8/11/17 and is open worldwide.
Are you a blogger who wants to participate in giveaways like these to grow your blog?  Click here to find out how you can join a totally awesome group of bloggers!


a Rafflecopter giveaway

Can a Human Circuit Light an LED bulb?

This past year when we were building lemon batteries, students had many of their own investigative questions.  For one, students wondered if lemon juice would light an LED bulb.  As a result, we tested lemon juice, apple juice, salt water, and many other liquids.  Acting on their own questions fueled even more curiosity.

One student wondered if we could build a human circuit.  I didn’t think it would be possible to light an LED bulb with a human circuit.  I researched it on Google before I tried this activity with the students, and I found NOTHING about being able to light an LED with a human circuit.  I had the students predict whether they thought that we could accomplish the lighting of an LED.  Only about three out of ten students thought we could light the bulb.

Here is what we did:

  1. I had each student get one alligator clip wire to connect a pre-1982 penny and a zinc nail.  (Doing this will give you about two more wires than you need, but at least everyone is busy.)
  2. I had about 10 students stand in a circle.
  3. Then each student in the circle held one pre-1982 penny in one hand between two fingers and with the other hand held one zinc nail between two fingers.
  4. Between each of the sets of students in the circle, I had the students hold the wire of an LED bulb.  One student held one wire (positive) coming out of the bulb while another student held the other wire (negative).
  5. I made sure everyone was making a complete circuit for the electricity to pass through.

Then I heard the unthinkable.  “I saw it light up!”  one child exclaimed.

Now, I thought the students just saw a reflection, and it really wasn’t lighting up. Speaking to myself here—“Oh, ye of little faith.”  Children are so optimistic, and I was blatantly reminded of my pessimism at this moment.

I turned off the lights because I wanted to be sure they weren’t imagining this. Sure enough, the electrical current flowed through all of the kids to create a human battery and light up an LED!!!

Side note:  In case you aren’t having success with your human circuit.  Make sure each child is actually making connection with a penny and a nail.  There must be a penny, nail pattern in the circle.  Flip the LED bulb the opposite direction if it doesn’t work the first time since each of the wires/prongs coming out of the LED are either positive or negative.

This could be an amazing team building experience with your students at the beginning of the year!

Cheap Mystery Experiments with Solids {Giveaway}

Originally I had planned for students to do the mystery liquids and mystery solids lessons together, but once students were doing their experiments, I realized we needed another class period to do the solids. This allows time for at least 15 minutes of rich discussion at the end. During the discussion time students tell what they think each solid is by defending it with their experiment data. Now, for each group of four students I made cups like the ones you see pictured. I collected seven substances that were white and powdery. Numbered cups help children determine which substance they are using and also help if they use the numbered plates I mentioned in the previous post. The substances can come from your kitchen cabinet or bathroom. These are the seven I used.

  1. Table salt
  2. Baking powder
  3. Baking soda
  4. Borax
  5. Powdered sugar
  6. Granulated sugar
  7. White Flour

Before allowing them to experiment, I asked them to discuss some of the ways that we could test these substances to see what they were. They mentioned the senses. At this point I tell them that we will absolutely NOT be tasting them, even though it would work in some cases, I let them know that these are NOT all edible. Further, I demonstrate how to use your hand to fan the scent of an item to smell it. Before I mentioned this, some students had sucked some of the substance up their nose by accident, and I didn’t want to repeat this problem. 🙂 Other ways to test that were mentioned were pH indicators, comparisons to other substances, and chemical reactions. Students had gathered significant data about these substances with pH indicators and chemical reactions in previous lessons.

Concerning materials management, I will be honest. I wasn’t brave enough to allow free access to  substances for them to freely gather to do chemical tests. I dispensed these as needed.

All in all, the kids enjoyed being scientists, mixing substances to see the reactions, and creating new substances. This lesson needs at least an hour and maybe longer for students who take longer. Some of my classes took more than one  class period, but most students needed just one.

Further, chemical reaction experiments are great to do before summer break because students will be inspired to do something besides sit in front of a  screen during the summer.  They might turn into real chemical engineers one day just by exploring their kitchen cabinets. (I always remind them to ask parental permission before exploring substances at home.) Now for a giveaway!

Prize: $25 Teachers Pay Teachers Gift Card
Giveaway Organized by: Kelly Malloy (An Apple for the Teacher)
Rules: Use the Rafflecopter to enter.  Giveaway ends 6/12/17 and is open worldwide.
Are you a Teacher Blogger or Teachers pay Teachers seller who wants to participate in giveaways like these to grow your store and social media?  Click here to find out how you can join our totally awesome group of bloggers! 

a Rafflecopter giveaway

Mystery Liquids

If you have already allowed children to experience chemical reactions, they will be sure to enjoy figuring out which liquids these are.  Now this experiment would go nicely with a CSI unit, if you tell children that these substances were found at a crime scene.  Then tell them that they have to figure out which substances were left at the crime scene.

Now, for the practical matters of this experiment.  First, I gathered five clear containers for each group and picked five mostly clear liquids.  You can use whichever liquids you would like, but I chose



*very watered down dish soap,

*Sprite, and

*rubbing alcohol.  

I colored every substance with food coloring except for the Sprite to make everything more mysterious.  Also, just an FYI:  I watered down the dish soap to the point where bubbles were almost undetectable, so it would be harder to figure out.  I gave students small plastic spoons like the taste test spoons at an ice cream store to dip out the liquids.  I also gave them wax paper because the surface tension of the water on wax paper is so evident compared to other liquids.  Further, if they have a sheet of wax paper as opposed to a plate they waste less. Just have paper towels readily available.

Before I let the students have the materials, I made them tell what they could do to each substance to test it before they received the liquids.  These are some of the things they told me.

  1. We can smell them.
  2. We can look at them.
  3. We can touch them.
  4. We can taste them.  (at which point, I say absolutely not :))
  5. We can look at our old notes and test them with pH strips to see if the results match.
  6. We can do chemical reaction experiments.
  7. We can compare them to the substances that are available ( I had some liquids available).

During experimentation, I had several things available in extra supply for experimentation:

  • extra solids available in small cups
  • extra liquids available in small cups
  • pH strips (I dispensed as needed)
  • cabbage juice (I dispensed as needed)

(these were set up similar to the chemical reactions lesson I already shared)

I left time at the end of our class for the students to discuss which liquids they were and to support their conclusions.  Most students were able to figure out all of the liquids except the water.  Some students asked me if I had duplicated any of the liquids, and I did not.  However, mwah ha ha, mwah ha ha (evil laughter), I did think about having two jars filled with water of different colors and having them figure this out.


What You Haven’t Read about Lemon Batteries

Are you building a lemon battery?  Here is how you build the battery, but I am going to tell you a few tips I learned through the process that I didn’t easily find on the internet.

(I apologize for not having pristine step by step photos of this process, but I am thinking about teaching when I’m taking these photos, so they don’t usually look perfect and bloggish.  The potatoes are above also since we did potato batteries as well.)

1.  Get about 3-4 lemons.

2.  Roll the lemons on the table pressing a bit with the palm of your hand to get the lemon juicy.

3.  Insert one copper penny into each lemon.  The penny acts as the positive terminal. Push the pennies about halfway in.

*The penny should be made before 1982 (these were made with almost entirely copper).  If they were made in 1982 or after they are only coated with copper.  You may have to borrow a child’s piggy bank.  I offered to pay my neighbor 5 cents for every penny she could find made before 1982.  I decided to do this because when I got rolls of pennies from the bank, there were only about 2 or 3 made before 1982 in the whole roll.  I was quite disappointed.  I say don’t waste your time, and find someone with a piggy bank.

4.  Insert one zinc nail (or screw) into each lemon.  The nail acts as the negative terminal.  Push it in with about 2 cm left outside of the lemon.    Make sure the nail doesn’t touch the penny inside the lemon.

*The more contact the nail has with the lemon juice the better your lemon will work.

5. Buy some alligator clips to connect the penny in each lemon to the nail in the next lemon.  You will need at least 5 wires for each set of four lemons you attach.  Attach the wire on one penny and the the other end of wire on one nail successively.  The wires on the lemons on the end need to be left unattached.  These ends will attach to the lightbulb.  This is my favorite go to image of the lemon battery.  I leave this on the SMART board for the kids to see while putting together their batteries.

*You can order alligator clips from here and many other places.  If you are in a pinch, you can go to Wal-mart’s automotive section and find red and black alligator clip wires there.  (Lowes and Home Depot didn’t have the whole wire and clip put together).

6. Attach each end of the LED bulb to the lose alligator clips.  Reference image link above in step 5.  One end of an LED is positive and one end is negative, so students will have to switch sides of the bulb if their circuit isn’t working.

*To get LED bulbs cheaply, you can buy a $1 flashlight at War-Mart etc. and beat it with a hammer until you can break the bulbs out.  This is a bit frustrating and took me about 30 minutes.  You may also see if anyone you know including parents of your students have old LED Christmas lights they want to get rid of.  When I put out a request for Christmas light strands, I got about 5-6 strands!!!  Score!

*This is a great video if you are wanting students to understand how the electrons flow to make electricity work in batteries.  If you are just wanting students to see the part about the battery, watch 1:34-3:55. If you want them to see how the lemon battery is built, you can continue watching until the end of the video.

What I definitely learned from experience:

*Yes, you can use the lemons for multiple classes.  They will still work.  I used the same lemons 3 back to back classes one day and four back to back classes the next.   After a few days (I can’t remember exactly how many) the lemons will mold, and you won’t want to use them anyway.

*The nails will no longer work when they turn too black after a couple of classes.  This is most often the reason the lemon battery doesn’t work for students who have all the wiring, pennies, and nails connected the right way.  You will have to use new nails.  They are relatively cheap, so no problem.

*The LED can burn out if you leave it connected too long.  I tell the students to count to 20 seconds after they see it light up and  then disconnect it.  It will last longer than 20 seconds, but this is just what I tell them.

*You can use a 9-volt battery as a light bulb tester if you want to see if the LED works in case the kids insist that the light bulb is the problem.  Touch each wire end of the LED lightbulb to the positive and negative terminals of the 9-volt battery.  This will FOR SURE blow out the LED bulb if left for too long so just touch it barely to the 9-volt for half a second to see if it lights up.  See here.

  • Most often when the students’ lemon battery doesn’t work it is because:
    • they have an alligator clip connected to two pennies or two nails.  It is important that there is a penny, nail, penny, nail, penny, nail, penny, nail connection, or the electrons won’t flow from the negative to the positive.
    • they have the LED light bulb turned the wrong way
    • the zinc on their nails has corroded and the nails need to be replaced.  This doesn’t happen with the pennies because lemon juice actually cleans pennies.

A great question to pose after this is, do you think you could light up an LED with fewer lemons?

The answer…Yes, you can sometimes light up the bulb with 3 lemons, but it will be dimmer.  It is also possible to light it up with only one lemon if you can put enough pennies and nails into a single lemon.  Now, I was never successful at this but, there are You Tube videos in which this has been explained.

5 Things to Know if Teaching Wiring with Electricity

While wading through teaching electricity, I learned a few hints that I wish I had known before setting out on this venture.

The following applies if you are teaching children to wire bulbs from Christmas light strands.

1.  If you strip wire, strip it a little at a time (about 2-3 cm).  This will prevent the small strands of copper from falling out from the friction.

2.  After you strip the wire, twist the exposed copper ends a little at a time to prevent the small strands of copper wire from falling out.  Then the copper wire will be stronger and easier to use.

3. If you allow students to use Christmas lights from the strand, it works best to just pull the bulb out completely and connect each end of the bulb wire (see small arrows above) to a Christmas light.  At times, you can cut the wire with the bulbs still in the wire and they worked, but more often than not, it didn’t work to cut the wire with the bulbs still in them.

4.   If you cut Christmas light wire to do wiring with Christmas lights, the thin wire will only carry about 12 volts before it overheats. I learned this from an electrician.

5.  If you use LED bulbs, be aware that one end of the LED bulb will be a positive end and one end will be negative.  This makes it more difficult to wire these type of bulbs.  This is because you don’t know if the circuit has a bad connection or if the bulb is turned around the wrong way.

Here is one of the best classroom models the kids made below.   They did one of the best wiring jobs!

Don’t Throw Out Your Old Christmas Lights!

As I have transitioned into my role as a GT (gifted and talented) teacher this year, I have found myself saving recyclables and trash of all sorts.  Now, before recyclable day at home, I find myself making a separate pile for taking items to school.  The recyclable man for my house gets NOTH-ING…almost :).  Students have used their imagination to build furniture and other unusual items out of their recyclables.  They have amazed me with their creativity!

Look at the detail in the picture below…a ceiling fan hangs from the ceiling.  A piece of milk carton plastic has been cut for a “SMART board”.  Little egg carton pieces make chairs.

Most recently students built a model GT classroom.  One of the requirements was that the model have five pieces of furniture.  One of the other requirements was that the model have at least two working lights.  Some of the most impressive models had “light fixtures” built out of bottle caps and other random pieces of plastic.  The models were most impressive!

Below you can barely see the lighting glowing in the background.  Students have made little chairs out of bottle caps and round circle tables.  Their SMART table is seen on the right corner made out of painted styrofoam.

To economically allow students to build a lit model, I had to acquire lighting from somewhere.  I certainly didn’t have the funding to buy all of the students lighting–especially because it seemed that the lights were blowing out with too much voltage from the batteries.  So where did I get lighting?  You guessed it!  I was able to acquire lighting from a parent getting rid of old Christmas lights.  She got rid of at least five strands of Christmas lights.   Just because some of the strands didn’t work, doesn’t mean we weren’t able to use them.  We were able to pull each bulb out and use the bulbs individually.

Sometimes we were able to cut the green wire with the bulb included and have the bulbs work that way, but that didn’t work very often for us.  When we pulled the bulbs out of the strand, we had the single bulbs.  The single bulbs had two wires sticking out that looked like bug antennas.  We were able to attach one end to the positive and one end to the negative end of a battery for them to work.  Christmas light bulbs will work with 1.5 volts, so we learned not to put too many batteries with just one bulb or they blew out.  Students can cut the extra green wire left on the strand to wire to the ends of the light bulbs.  Then they attach them to batteries, and in our case we put light switches ($0.69 each) in the circuits.

Below one of the models is shown with the lighting glowing a bit.


Students really enjoyed this project.  This did  take several weeks to complete.  I hope this gives you some ideas for your own students and classes.

I Didn’t Think the Kids Could Make This Work, But…

I have been teaching my kids about circuits lately.  They have been using the little 1.5 volt incandescent bulbs, wires with alligator clips, and D cell batteries.  D cell batteries are also 1.5 volts.  I had brought in every lightbulb in my house that had burned out so the kids could see all of the filaments floating around in the bottom of the bulb.  I also brought in one working 40 watt incandescent bulb.  I thought it would be fun for them to see if they could get the bulb to light.  Because the bulb says 120 volts on the bottom, I didn’t think the students could get it to work.  We had a limited number of batteries to even try to light the bulb.

I put the large light bulb in a station for free experimentation.  I thought the kids had forgotten about trying to get the large bulb to light, so I put the bulb in my lamp.  When they asked about trying to get the bulb to light again, I took it out of the lamp and told them they could try up to seven batteries.  They tried the seven batteries and the bulb didn’t light.  When they were puzzled, I asked them whey they thought it didn’t light.  Showing the girls the print on the bottom of the bulb and inquiring about the voltage of the battery, they realized they needed more batteries.  I explained to them that we probably didn’t have enough batteries.  Their reply was, “PLEASE, PLEASE, PLEASE, can we try more batteries?!”  Since they were so persistent, I let them.  I expected there to be no change in the bulb.

About five minutes later, I hear the girls squeal with delight!  You guessed it!  They lit up the bulb!  They had about 21 D batteries taped together end to end with masking tape down the length of them.  By this time in class, about five or six students had joined in and were holding a section of the batteries to make sure they were completely touching end to end.  One child was holding the wire from the positive to the negative end of the batteries.  When they got the bulb to light a little, they wanted to add more batteries to make it brighter.

What’s even better?  With a tiny bit of prompting, the kids were doing real world decimal addition/multiplication.  They were counting the amount of volts they had on each battery and figuring out how much voltage they were using to power the light bulb.  I am glad I gave into their pleading and never told them I didn’t think it would work :)!  They will probably remember this MORE than anything I had planned to officially teach them!

Cheap and Fun Electric Science!

The hardware store is a place brimming with possibilities for fun and cheap science experiments.  Did you know you can buy light switches for $0.69, and a foot of copper electrical wire for less than that?!  Not only that, but you can buy a couple of large D cell batteries for $1 at the Dollar Tree.  I will admit I already had some batteries and light bulbs in a science kit at school.  Lowes sells the wire for a few cents a foot.  If you tell them you are a school teacher, and look a bit pitiful, then they will cut it into foot segments for you :).  I actually bought the light switches because one of my students wondered how they worked.  I bought one to break apart with a hammer, so the kids could see the inner workings of the switch.  The others I bought for students to connect to the battery and the light bulb with the wires.  The kids were really excited to experiment with this.  We had already been building circuits, so I didn’t exactly tell students how to connect the light switch to make the bulb turn on and off.  I let them figure this out with the information they had already learned.

Here’s a little secret.  If you want really cheap light bulbs, you can get LED bulbs if you buy a small flashlight for a dollar at Wal-mart.  Then break the flashlight with a hammer to get the bulbs out.  You will get around seven bulbs if you do this.  However, the bulbs I used for this were in a science kit, and I didn’t have to buy them.  They were little incandescent bulbs.

The next thing you can do for really cheap fun  is this.  Get a regular light bulb that you would put in a lamp, place one out for kids to experiment with if they have already learned how to build circuits.  Challenge the kids to make the lightbulb light up.  I tell them they can use up to five batteries.  The kids won’t be able to light up the bulb.  I know this, but they don’t.  Several lessons previous to this, I had kids really examine the writing on the batteries, and some students noticed the 1.5 v.  I had also had them pass around some old blown out light bulbs to study the broken filaments and the writing on the bulbs.  If they make the connection, they will realize that the bulbs need 120 volts.  The batteries only provide 1.5 volts each.  It would take A LOT of batteries to power the light bulb.  More than they could stretch out on a table (but that’s my little secret, wink wink).  The fun in this activity is asking…well, why didn’t that work?

(Sidenote:  I only have a few of these items mentioned above for students to experiment with when they finish their work.  I don’t buy a whole class set.)

I hope you now have some great reasons to do  some cheap and easy science experiments!

Prize: $75 Teachers Pay Teachers Gift Card
Giveaway Organized by: Kelly Malloy (An Apple for the Teacher), 
Rules: Use the Rafflecopter to enter. Giveaway ends 2/13/17 and is open worldwide.
Are you a Teacher Blogger or Teachers pay Teachers seller who wants to participate in giveaways like these to grow your store and social media?  Click here to find out how you can join our totally awesome group of bloggers!

a Rafflecopter giveaway



Artisteer - CMS Template Generator